Harmonics on Stiefel Manifolds and Generalized Hankel Transforms

نویسنده

  • STEPHEN S. GELBART
چکیده

In this note we announce an extension of these theorems to the setting of Stiefel manifolds and matrix space. Our work makes it possible to construct holomorphic discrete series representations for the real symplectic group by decomposing a tensor product of certain projective representations introduced earlier by Shale and Weil. (See Weil [11] and also Shalika [10].) Proofs of the results announced here and their application to the construction of discrete series will appear elsewhere. We let Mnm denote then x m real matrix space, S w,m the Stiefel manifold of matrices VeMnm such that VV = Im9 and Pm the cone of m x m positive-definite symmetric matrices. The rotation group SO(n) acts on S"' and Mnttn by left matrix multiplication so that S"' m s SO(n)/SO(n m). Corresponding to the decomposition Mnm = S w,m x Pm we have the integral formula

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple point of self-transverse immesions of certain manifolds

In this paper we will determine the multiple point manifolds of certain self-transverse immersions in Euclidean spaces. Following the triple points, these immersions have a double point self-intersection set which is the image of an immersion of a smooth 5-dimensional manifold, cobordant to Dold manifold $V^5$ or a boundary. We will show there is an immersion of $S^7times P^2$ in $mathbb{R}^{1...

متن کامل

Riemannian Optimization Method on the Flag Manifold for Independent Subspace Analysis

Recent authors have investigated the use of manifolds and Lie group methods for independent component analysis (ICA), including the Stiefel and the Grassmann manifolds and the orthogonal group O(n). In this paper we introduce a new class of manifold, the generalized flag manifold, which is suitable for independent subspace analysis. The generalized flag manifold is a set of subspaces which are ...

متن کامل

Generalized Catalan Numbers, Hankel Transforms and Somos-4 Sequences

We study families of generalized Catalan numbers, defined by convolution recurrence equations. We explore their relations to series reversion, Riordan array transforms, and in a special case, to Somos-4 sequences via the mechanism of the Hankel transform.

متن کامل

Riordan-Bernstein Polynomials, Hankel Transforms and Somos Sequences

Using the language of Riordan arrays, we define a notion of generalized Bernstein polynomials which are defined as elements of certain Riordan arrays. We characterize the general elements of these arrays, and examine the Hankel transform of the row sums and the first columns of these arrays. We propose conditions under which these Hankel transforms possess the Somos-4 property. We use the gener...

متن کامل

On some generalized recurrent manifolds

‎The object of the present paper is to introduce and study a type of non-flat semi-Riemannian manifolds‎, ‎called‎, ‎super generalized recurrent manifolds which generalizes both the notion of hyper generalized recurrent manifolds [‎A.A‎. ‎Shaikh and A‎. ‎Patra‎, On a generalized class of recurrent manifolds‎, Arch‎. ‎Math‎. ‎(Brno) 46 (2010) 71--78‎.] and weakly generalized recurrent manifolds ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007